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1. INTRODUCTION AND MAIN RESULTS

It is well known that Post�Widder operators constitute the real inversion
formula for the Laplace transform. Post�Widder operators are given by

Pn( f, x)=
(n�x)n

(n&1)! |
�

0
e&nu�xun&1f (u) du, x # (0, �), (1.1)
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where f # Lp[0, �) (1�p<�) or f # C[0, �). We will use for Pn( f, x) the
combination Pn, r( f, x) given by [1, Chapter 9]

Pn, r( f, x)= :
r&1

i=0

Ci (n) Pni
( f, x), x # (0, �), r # N, (1.2)

where ni and Ci (n) satisfy

(a) n=n0< } } } <nr&1�An;

(b) �r&1
i=0 |Ci (n)|�C;

(c) �r&1
i=0 Ci (n)=1;

(d) �r&1
i=0 Ci (n) Pni (( } &x)k, x)=0, 1�k�r&1.

Concerning the approximation by linear combinations of Post�Widder
operators, Ditzian and Totik [1] proved direct and converse results for
these operators in Lp . Their main theorems show, for f # Lp[0, �), 1�p
�� (with C[0, �), for p=�) and .(x)=x, that

&Pn, r ( f, x)& f (x)&p=O(n&:) � |2r
. ( f, t)p

=O(t2:) (0<:<r), (1.3)

where

|2r
. ( f, t)p= sup

0<h�t
&22r

h. f &Lp[0, �) , .(x)=x, f # Lp[0, �), (1.4)

and

22r
h f (x)={ :

2r

j=0

(&1) j \2r
j + f (x+(r& j) h),

0,

for x�rh

otherwise.

The first aim of this paper is to prove new direct and converse results on
weighted simultaneous approximation by the method of linear combina-
tions of Post�Widder operators in Lp , 1�p��. Our results are stated as
follows.

Theorem 1.1. Let f, f (l ), .lf (l) # Lp[0, �), 1�p�� (with C[0, �),
for p=�), l # N0 , r # N. Then

&.l (Pn, r( f, x)& f (x)) (l )&p�C[|2r
. ( f (l ), n&1�2).l, p+n&r&.lf (l )&p].

Here

|2r
. ( f (l ), t).l, p= sup

0<h�t
&.l 22r

h. f (l )&Lp[0, �) , f (l ), .lf (l ) # Lp[0, �)
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is the weighted Ditzian�Totik modulus of smoothness which was shown in
[1, Chap. 6] to be equivalent to the weighted K-functional defined by

K 2r
. ( f (l ), t2r). l, p=inf [&.l ( f (l )& g)&p+t2r &.l+2rg(2r)&p ,

.lg, .l+2rg(2r) # Lp[0, �), 1�p��]. (1.5)

Theorem 1.2. Let f, f (l ), .lf (l) # Lp[0, �), 1�p�� (with C[0, �),
for p=�), l # N0 , r # N, t>0. Then

K 2r
. ( f (l ), t2r). l, p�&.l (Pn, r( f, x)& f (x))(l )&p+M(nt)r K 2r

. ( f (l ), n&2r).l, p .

(1.6)

From Theorems 1.1 and 1.2 and Corollary 6.3.2 in [1], and the Berens�
Lorentz Lemma [1, Chap. 9], we obtain

Theorem 1.3. Let f, f (l ), .lf (l ) # Lp[0, �), 1�p�� (with C[0, �),
for p=�), l # N0 , r # N, t>0, and l�2<:<l�2+r. Then the following
statements are equivalent.

&.l (Pn( f, r&1, x)& f (x)) (l )&p=O(nl�2&:); (1.7)

|2r
. ( f (l ), t). l, p=O(t2l&:); (1.8)

|2r+l
. ( f, t)p=O(t2:). (1.9)

Remark 1.4. For l=0, we obtain (1.3) mentioned above. Some ideas of
our proof of Theorem 1.3 are from [5].

With the definition of (1.4), the Besov space of Ditzian�Totik type
B:

q(Lp[0, �)) are defined for 0<:<m, 1�p��, and 0<q�� as the
set of all functions f # Lp[0, �) for which

| f |B :
q (Lp[0, �))=\|

�

0
(t&:|m

.( f, t)p)q 1
t

dt+
1�q

(1.10)

is finite. Here, m is any integer larger than :. When q=�, the usual
change from integral to sup is made in (1.10). We define the following
norms or quasi-norms for B:

q(Lp[0, �)):

& f &B :
q (Lp [0, �))=& f &Lp [0, �)+| f |B :

q (Lp[0, �)) . (1.11)

These Besov spaces were defined for 1�q�� and studied by Zhou [8]
and also studied by several other authors [3, 4].

We note that when q<1, (1.11) is not really a norm, it is only a quasi-
norm, and that different values of m>: result in norm or quasi-norm
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(1.11) which are equivalent. This is proved by establishing inequalities
between the modulus of smoothness |m

.( f, t)p and |m+1
. ( f, t)p . A simple

inequality is |m+1
. ( f, t)p�C|m

.( f, t)p , which follows from [1, Chap. 4]. In
the other direction, we have the Marchaud type inequality

|m
.( f, t)p�Ctm {|

c

t

|m+1
. ( f, u)p

um+1 du+& f &p= ,

which was also proved in [1, Chap. 4]. Using these two inequalities for
modulus |m

.( f, t)p together with Hard inequality [1, Chap. 9], one shows
that any two norms or quasi-norms given by (1.11) are equivalent provided
that both m satisfy m>:.

Some papers [2, 6, 7] have characterized smoothness of the functions in
C[0, 1] by derivatives of Bernstein-type integral operators and also in Lp ,
1�p�� by derivatives of Bernstein�Durrmeyer operators. In the second
part of this paper, by using of the commutative property of these operators,
we will show that the derivatives of Pn, r( f, x) can also be characterized in
the Besov spaces defined as in (1.11).

Theorem 1.5. For r # N, 0<:<r, f # Lp[0, �), 1�p�� (with
C[0, �), for p=�), and 0<q��, the norms or quasi-norms

& f &B:
q (Lp [0, �)) , (1.12)

&[(n+1):& Pn, r( f, x)& f&p]&l*q
+& f &p , (1.13)

and

&[n:&r &.2rP (2r)
n, r ( f, x)&p]& l*q

+& f &p (1.14)

are equivalent, where for a sequence [an]�
n=1

&[an]&l*q
={\ :

�

n=1

|an |q n&1+
1�q

,

sup
n

|an |,

for 0<q<�

q=�.

Remark 1.6. For q=� and 0<:<r, we obtain the equivalent relations

&Pn, r ( f, x)& f (x)&p=O(n&:) � |2r
. ( f, t)p

=O(t2:) � &.2rP (2r)
n f &p=O(nr&:),

which is also similar to results given in [2] for Bernstein�Durrmeyer
operators and linear combinations of Bernstein�Durrmeyer operators.
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Throughout this paper, M and C will always stand for positive constants
which are dependent only on p, q, r, l, and :; their values may be different
at different occurrences and .(x)=x.

2. DEFINITIONS AND AUXILIARY RESULTS

For convenience we introduce the auxiliary operators given for n�l+1,
l # N0 , f # Lp[0, �) (1�p<�), or f # C[0, �) by

Pn, r, l ( f, x)= :
r&1

i=0

Ci (n) P� ni , l ( f, x), x # (0, �),

where

P� ni , l ( f, x)=
nni

i

(ni&1)! |
�

0
e&ni ttni+l&1f (tx) dt

=
nni

i

(ni&1)! |
�

0
e&ni u�x uni+l&1

xni+l f (u) du, x # (0, �). (2.1)

It is easy to see that these operators too are bounded on the spaces
Lp[0, �), 1�p�� (with C[0, �), for p=�) and that the following four
representations are also valid.

If f, .lf # Lp[0, �), 1�p�� (with C[0, �), for p=�), l # N0 , then

.lPn, r, l ( f, x)=Pn, r(.lf, x). (2.2)

If f, f (l) # Lp[0, �), 1�p�� (with C[0, �), for p=�), l # N0 , then

P (l )
n, r ( f, x)=Pn, r, l ( f (l ), x). (2.3)

If f, .lf # Lp[0, �), 1�p�� (with C[0, �), for p=�), l # N0 , then

.lP (l )
n, r ( f, x)=Pn, r (.lf (l ), x). (2.4)

If f, .2rf (2r) # Lp[0, �), 1�p�� (with C[0, �), for p=�), l # N0 ,
then

.2rP (2r)
n, r, l ( f, x)=Pn, r (.2rf (2r), x). (2.5)

For the proofs of our main theorems, we will need the following lemmas,
which are of importance by themselves.
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Lemma 2.1. If f, .lf # Lp[0, �), 1�p�� (with C[0, �), for p=�),
l # N0 , then

&.lPn, r l ( f, x)&p�C&.lf &p . (2.6)

Proof. With (2.2), we have

&.lPn, r, l ( f, x)&p=&Pn, r (.lf, x)&p�C &.lf &p .

Lemma 2.2. If f, .2rf (2r), .2r+lf (2r) # Lp[0, �), 1�p�� (with C[0, �) ,
for p=�), l # N0 , then

&.2r+lP (2r)
n, r, l ( f, x)&p�C&.2r+lf (2r)&p . (2.7)

Proof. Multiplying both sides in relation (2.5) by .l, we obtain

.2r+lP (2r)
n, r, l ( f, x)=.lPn, r, l (.2rf (2r), x).

Using (2.2), we have

.2r+lP (2r)
n, r, l ( f, x)=Pn, r (.2r+lf (2r), x),

which implies

&.2r+lP (2r)
n, r, l ( f, x)&p�C&.2r+lf (2r)&p .

Lemma 2.3. If f, .lf # Lp[0, �), 1�p�� (with C[0, �), for p=�),
l # N0 , then

&.2r+lP (2r)
n, r, l ( f, x)&p�Cnr &.lf &p . (2.8)

Proof. By simple computation, we have

P� ni , l ( f, x)=
1
xl Pni

(.lf, x), (2.9)

then

.2r+lP� (2r)
ni , l ( f, x)= :

2r

j=0

Cr, j, l.(x)2r& j P (2r& j)
ni

(.lf, x).

From [1, Chap. 9], it is easy to obtain

P (2r& j)
ni

(.lf, x)= :
2r& j

&=0

Q&(n i , x) Pni
(( } &x)& .lf, x),
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where Q&(ni , x)=�2s+r&&=2r& j C(&, {) ns
i �x2s+{. Therefore

.(x)2r& j |Q&(ni , x)|�C
nr+&�2

x& , x>0, &=0, 1, 2, 3, ...0, 2r.

Thus, following the proof of Lemma 9.4.1 in [1], it is easy to complete the
proof of Lemma 2.3.

Lemma 2.4. If f, .lf, .2r+lf (2r) # Lp[0, �), 1�p�� (with C[0, �),
for p=�), l # N0 , then

&.l (Pn, r, l ( f, x)& f (x))&p�Cn&r[&.lf &p+&.2r+lf (2r)&p]. (2.10)

Proof. With (2.2), we have

.l (Pn, r, l ( f, x)& f (x))=Pn, r (.lf, x)&(. lf ) (x).

We expand .lf by the Taylor formula

(.lf )(t)= :
2r&1

j=0

(t&x) j

j !
(.lf )( j) (x)+R2r (. lf, t, x),

with the integral remainder

R2r (.lf, t, x)=
1

(2r&1)! |
t

x
(t&v)2r&1 (.lf )(2r) (v) dv.

We write

Pn, r (.lf, x)= :
2r&1

j=0

1
j !

(.lf ) ( j) (x) Pn, r (( } &x) j, x)

+Pn, r \ 1
(2r&1)! |

t

x
(t&v)2r&1 (.lf ) (2r) (v) dv, x+ .

It follows from the definition of Pn, r ( f, x) that

Pn, r (.lf, x)&(.lf )(x)= :
2r&1

j=r

1
j !

(.lf ) ( j) (x) Pn, r (( } &x) j, x)

+Pn, r \ 1
(2r&1)! |

t

x
(t&v)2r&1 (.lf ) (2r) (v) dv, x+

=I1+I2 .
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Using Lemma 9.5.1 of [1], we have

|I1 |�Mn&r :
2r&1

j=r

1
j !

|(.lf )( j) (x) .(x) j|

�Mn&r :
2r&1

j=r

:
j

s=0

|.l&s+ j (x) f ( j&s)(x)|.

Then

&I1&p�Mn&r \ :
2r&1

j=r

:
j&1

s=0

& l&s+ jf ( j&s)&p+&.lf &p+ .

Using that &.l+ j&sf ( j&s)&p�C&.l+ j&s+1f ( j&s+1&p , for j&s=1, 2,3,...
2r&1, which follows easily from the Hard inequality for 1�p<�, [1,
Chap. 9] and for p=�, &.l+ j&sf ( j&s)&�=&.l+ j&s ��

x f ( j&s+1)(t) dt&�

�C&.l+ j&s+1f ( j&s+1)&� , we see that

&I1&p�Mn&r (&.2r+lf (2r)&p+&. lf &p).

To prove (2.10), it remains to show that for 1�p��

&I2&p�Mn&r (&.2r+lf 2r)&p+&.lf &p).

From [1, Lemma 9.5.2], we have

&I2&p�Mn&r (&.2r (.lf )(2r)&p+&.lf &p)

�Mn&r \ :
2r&1

j=0

C j, l, r&.2r+l& jf (2r& j)&p+&.lf &p + ,

thus we obtain in a way similar to before the estimate

&I2&p�Mn&r (&.2r+lf (2r)&p+&. lf &p).

The proof of Lemma 2.4 is complete.

Next we will prove the commutative property of these operators, which
is important for our purpose.

Lemma 2.5. For f (x) # Lp[0, �), 1�p�� (with C[0, �), for p=�),
m, n=1, 2, 3, ..., then

Pn, r (Pm, r ( f, } ), x)=Pm, r (Pn, r ( f, } ), x), x>0. (2.11)
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Proof. From the definition of linear combination for the Post�Widder
operator Pn, r ( f, x), we need only to show that

Pn(Pm( f, } ), x)=Pm(Pn( f, } ), x), m, n=1, 2, 3, ..., x>0.

For p=�,

Pn(Pm( f, } ), x)=|
�

0

(n�x)n

(n&1)!
e&nu�xun&1 Pm ( f, u) du

=|
�

0

(n�x)n

(n&1)!
e&nu�x un&1 |

�

0

(m�u)m

(m&1)!
e&mv�u vm&1f (v) dv du.

Since

|
�

0

(n�x)n

(n&1)!
e&nu�xun&1 |

�

0

(m�u)m

(m&1)!
e&mv�uvm&1 | f (v)| dv du�& f &� ,

thus, by using of Fubini's theorem, we have

Pn(Pm( f, } ), x)=|
�

0
f (v) vm&1 dv |

�

0

(n�x)n

(n&1)!

_e&nu�xun&1 (m�u)m

(m&1)!
e&mv�u du.

Let v�u=w�x, then

|
�

0
f (v) vm&1 dv |

�

0

(n�x)n

(n&1)!
e&nu�xun&1 (m�u)m

(m&1)!
e&mv�u du

=|
�

0
f (v) vm&1 dv |

�

0

(n�x)n

(n&1)!
e&nv�w \xv

w +
n&1

_
1

(m&1)! \
mw
xv +

m

e&mw�x xv
w2 dw

=|
�

0
f (v) vm&1 dv |

�

0

(m�x)m

(m&1)!
e&mw�xwm&1 (n�w)n

(n&1)!
e&nv�w dw

=|
�

0

(m�x)m

(m&1)!
e&mw�xwm&1Pn( f, w) dw

=Pm(Pn( f, } ), x).
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Thus we prove Lemma 2.5 for p=�. For 1�p<�, we define C0=[ f #
C[0, �), supp f/[0, M] for some M>0]. It is obvious that C0 is dense
in Lp[0, �) for 1�p<�; therefore we need only to prove the result for
f # C0 , which is similar to the case of p=�. Then the proof of Lemma 2.5
is complete.

3. PROOFS OF THE MAIN RESULTS

Proof of Theorem 1.1. The essential tool in this proof is the equivalence
|2r

. ( f (l ), t).l, p tK 2r
. ( f (l ), t2r).l, p and it has to be shown that

&.l (Pn, r ( f, x)& f (x)) (l )&p�C[K 2r
. ( f (l ), n&r).l, p+n&r&.lf (l )&p]. (3.1)

Now for every g # Lp[0, �) with .lg, .2r+lg(2r) # Lp[0, �), Lemma 2.1,
Lemma 2.4 and (2.3) imply

&.l (Pn, r ( f, x)& f (x)) (l )&p�&.lPn, r, l ( f (l )& g, x)&p+&. l ( f (l )(x)& g(x))&p

+&.l (Pn, r, l (g, x)& g(x))&p

�C[&.l ( f (l )(x)& g(x))&p

+&.l (Pn, r, l (g, x)& g(x))&p]

�C[&.l ( f (l )(x)& g(x))&p

+n&r&.2r+lg(2r)&p+n&r&. lf &p] .

Taking here the infimum over all g subject to the definition of the weighted
K-functional gives the desired inequality (3.1). Then we complete the proof
of Theorem 1.1.

Proof of Theorem 1.2. From the definition of the weighted K-functional
in (1.5), Lemma 2.2 and Lemma 2.3, it is easy to prove theorem 1.2.

Proof of Theorem 1.5. We only prove the equivalence between (1.12)
and (1.14) for 0<q<�, since the proof for the case q=� is simple and
the equivalence between (1.12) and (1.13) can be proved by using the same
method as the proof of Theorem 4.1 of [3].

From [1, Chap. 9], it is easy to obtain

&.2rP (2r)
n, r ( f, x)&p�Mnr|2r

. ( f, n&1�2)p , 1�p��.
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Hence, for 0<q<�

:
�

n=1

(n:&r&.2rP (2r)
n, r ( f, x)&p)q 1

n

�M \ :
�

n=2

n:q&1|2r
. ( f, n&1�2)q

p+& f &q
p+

�M \ :
�

n=2
|

(n&1)&1�2

n&1�2
(t&2:|2r

. ( f, t)p)q 1
t

dt+& f &q
p+

�M \|
�

0
(t&2:|2r

. ( f, t)p)q 1
t

dt+& f &q
p+.

To prove the inverse part, we choose 2�* # N, which will be determined
later, and let [nk]k # N be a sequence of integers such that *k&1�n r

k<*k

and

&.2rP (2r)
nk , r ( f, x)&p= min

*k&1�nr<*k
[&.2rP (2r)

n, r ( f, x)&p]. (3.2)

We now recall the Peetre K-functional

K2r, .( f, t2r)p= inf
g(2r&1) # A } Cloc

(& f& g&Lp [0, �)+t2r &.2rg(2r)&Lp [0, �)),

1�p��, (3.3)

which was shown in [1, Chap. 2] to be equivalent to |2r
. ( f, t)p .

For 0<q<�, we have

|
�

0
(t&2:K2r, .( f, t2r)p)q dt

t
�|

1

0
(t&2:K2r, .( f, t2r)p)q dt

t
+M& f &q

p

�M \ :
�

k=0

(*k:�rK2r, .( f, *&k)p)q+& f &q
p+ .

We fix m # N and let Uk=*k:�rK2r, .(Pm, r ( f, x), *&k)p , and obtain by using
Theorem 9.3.2, Lemma 9.7.2 of [1], and Lemma 2.5,

Uk�*k:�r&Pm, r ( f, x)&Pnk+2, r (Pm, r ( f, } ), x)&p

+*k(:�r&1) &.2rP (2r)
m, r(Pnk+2 , r ( f, } ), x)&p
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�M*k:�rK2r, .(Pm, r ( f, x), n&r
k+2)p+M*k(:�r&1) & f &p

+M*k(:�r&1) &.2rP (2r)
nk+2 , r( f, x)&p

�M*&:�rUk+1+M*k(:�r&1)(&.2rP (2r)
nk+2 , r( f, x)&p+& f &p)

�(M*&:�r) j Uk+ j+M*k(:�r&1) :
j&1

l=0

(M*&1) l

_(&.2rP (2r)
nk+2+l , r( f, x) & p+& f &p).

Since

Uk+ j=*(k+ j)k:�rK2r, .(Pm, r ( f, x), *&k& j)p

�*(k+ j)(:�r&1)&.2rP (2r)
m, r( f, x)&p .

Taking * to be big enough, then we have

(M*&:�r)l Uk+ j�(M*&1) j *k(:�r&1) &.2rP (2r)
m, r ( f, x)&p � 0, j � �.

Hence

Uk�M*k(:�r&1) :
�

l=0

(M*&1) l ( &.2rP (2r)
nk+2+ l , r ( f, x)&p+ & f &p).

Note that for f # Lp[0, �), 1�p<�, and C[0, �) for p=�, we have

&Pm, r( f, x)& f (x)&p � 0, m � �,

and therefore

*k:�rK2r, .( f, *&k)p�M*k(:�r&1) :
�

l=0

(M*&1) l ( &.2rP(2r)
nk+2+l , r ( f, x)&p+ & f &p).

(3.4)

For 0<q<�, we choose 0<+<min[1, q], we have

:
�

k=0

(*k:�rK2r, .( f, *&k)p)q

�M & f &q
p+ :

�

k=0

(M*k(:�r&1))q { :
�

l=0

[(M*&1) l &.2rP (2r)
nk+2+l , r ( f, x)&p]+=

q�+

.
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Taking ;=:�2 and *>M2r�:. Then the second term can be deduced by the
Ho� lder inequality as

{ :
�

l=0

[(M*&1) l &.2rP (2r)
nk+2+l , r ( f, x)&p]+=

q�+

�{ :
�

l=0

(n;&r
k+l+2 &.2rP (2r)

nk+2+l , r ( f, x)&p)q=

{ :
�

l=0

[(M*&1) l n r&;
k+l+2]q+�(q&+)=

q�+&1

�C :
�

l=k+2

(n;&r
l &.2rP (2r)

nl , r ( f, x)&p)q*(k+2)(1&;�r) q.

Then

:
�

k=0

(*k:�rK2r, .( f, *&k)p)q

�C :
�

k=0

*k(:�r&1) q+k(1&;�r) q :
�

l=k+2

(n;&r
l &.2rP (2r)

nl , r ( f, x)&p)q+M & f &q
p

�C :
�

l=2

(n;&r
l &.2rP (2r)

nl , r ( f, x)&p)q :
l&2

k=0

*qk(:&;)�r+M& f &q
p

�C :
�

l=2

(*(l&1)(;�r&1)+(l&2)(:&;)�r)q &.2rP (2r)
nl , r ( f, x)&q

p+M & f &q
p

�C :
�

l=2

:
*l&1�nr�*l

(n:&r &.2rP(2r)
n, r ( f, x)&p)q 1

n
+M & f &q

p .

Therefore, we have

{|
�

0
(t&2:K2r, .( f, t2r)p)q dt

t =
1�q

�C {_ :
�

n=1

(n:&r &.2rP (2r)
n, r ( f, x)&p)q 1

n&
1�q

+ & f &p= .

Then we complete the proof of Theorem 1.5.
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